

Guietta!

Guietta is a tool that makes simple GUIs simple:

from guietta import _, Gui, Quit

gui = Gui(

 ['Enter numbers:', '__a__' , '+' , '__b__', ['Calculate']],
 ['Result: -->' , 'result' , _ , _ , _],
 [_ , _ , _ , _ , Quit]
)

with gui.Calculate:
 gui.result = float(gui.a) + float(gui.b)

gui.run()

And here it is:

[image: _images/example.png]

	Also featuring:

	
	matplotlib and pyqtgraph integration, for easy event-driven plots

	easily display columns of data in labels using lists and dicts

	multiple windows

	customizable behaviour in case of exceptions

	queue-like mode (a la PySimpleGUI)

	integrate any QT widget seamlessly, even your custom ones (as long as
it derives from QWidget, it is OK)

	easy background processing for long-running operations

	ordinary QT signals/slots, accepting any Python callable, if you really
want to use them

Installation

pip install guietta

Install on older platforms

Guietta uses the PySide2 [https://pypi.org/project/PySide2/] QT5 binding
by default, and some systems
(older Macs, Raspberry PI) do not have it available. Guietta can fallback
to the PyQt5 binding if available, but does not specify it as an automatic
dependency. If you get an
installation error about PySide2, try to use PyQt5 instead using the
following:

pip install guietta --no-deps
pip install pyqt5

Screenshots

[image: _images/guietta_screenshot_psd.png]
Guietta at work in a scientific lab, showing an interactive plot.

Tutorial

Direct link to the tutorial: tutorial.html.

See also the rest of the documentation below.

Source code

https://github.com/alfiopuglisi/guietta

Troubleshooting

Guietta uses Qt5, and some Linux distributions, like Ubuntu 16.04, appear
to have an incomplete default installation. If you encounter trouble
running guietta, please read the
troubleshooting guide.

If you use conda, please read our page on
QT incompatibilities with conda.

Documentation

	Introduction

	Tutorial

	Reference

	How Guietta works

	Changelog

Introduction

The problem with GUIs

If you have worked with any GUI framework, like the excellent QT library,
you will have noticed a very common problem: in order to make
difficult things possible, simple things become difficult.

Guietta makes simple GUIs simple. For example, suppose that you want to
make a GUI where the user enters two numbers, and when a button is
clicked some complicated operation is performed, say, the numbers
are added up, and the result displayed back to the user.
With plain QT, you have two choices:

	Start Qt Designer up and build your GUI using drag and drop. Designer saves
an .ui file, which can be converted using pyuic to a python module,
which can be imported into your program….

	Skip Designer and do things
programmatically: create a layout, then create your three or four widgets,
then add them to the layout. Ah wait, should we build a row with
HBoxLayout and join several of them into a VBoxLayout, or is it the
other way around? How things are going to line up?

It’s not over. In both cases, now define a function that does
the calculation, connect the right signal to the right slot (what was the
signal name again?), etc etc….

I’ve given up already.

Using Guietta’s compact syntax, here is how the layout looks like:

from guietta import _, Gui, Quit

gui = Gui(

 ['Enter numbers:', '__a__' , '+' , '__b__', ['Calculate']],
 ['Result: -->' , 'result' , _ , _ , _],
 [_ , _ , _ , _ , Quit])

can you see the GUI? Right in the code? We can add then the behaviour
with a few more lines:

with gui.Calculate:
 gui.result = float(gui.a) + float(gui.b)

gui.run()

That’s enough to get it working! That was 11 lines in total, including
a few blank ones for clarity.

And here is the result on my computer:

[image: _images/example.png]
It’s that simple.

Note

for IPython users: if you type the previous example on the command
prompt, it may or may not work (it appears to work on recent
ipython versions). IPython does strange things
with the command history. If it does not work, put the example
into a file and run it.

What Guietta is

Guietta is actually a thin wrapper over QT. It allows one to quickly
create QT widgets, assemble them into a layout, and make it responsive
to user input. All standard QT features are available, including
signals/slots and the event loop, so if you know enough QT,
you can do some pretty amazing things.

And if you have a big graphical program with multiple windows and pop-ups,
you can use a subset of Guietta to simplify the window creation where
it makes sense.

It also works in the other direction: if you have a big complicated custom
QT widget, and you need to insert it into a dialog together with some
more buttons, Guietta can do that too.

What Guietta is not

Guietta is a tool for making simple GUIs. You will not able to use it
to make the next version of Photoshop, not even the next version of
MS Paint. It does not do super-fancy layouts, or cinema-like animations.

Aren’t you just copying from PySimpleGUI?

PySimpleGUI is a much bigger project with a bigger goal: produce a
GUI framework that can work with multiple interfaces (QT, TKinter, even
web-based) and is easy to use for the beginner. PySimpleGUI’s simplified
syntax was a great idea and it was the inspiration for Guietta,
but it stopped to soon. Guietta goes much further in simplifying things,
and as a result it has less features than PySimpleGUI.

The layout doesn’t respect PEP8!

Alas, no. Laying out GUIs with code was not foreseen when PEP8 was written.

Next topic: the tutorial.

Tutorial

What you need

Python 3.5 or newer

Install Guietta

pip install guietta

This should also automatically install PySide2, if you don’t already have it.
If you plan to use Matplotlib together with guietta, you should install that
too. It is not done automatically.

Should I learn QT before starting?

No. Knowing QT will make it easier to digest the most advanced topics,
but there is no need for it.

Quickstart

We will work with a simple assignment: make a GUI application that,
given a number, doubles it. Here is how we begin:

from guietta import Gui, _

gui = Gui(['Enter number' , '__num__' , ['Go']],
 ['Result ---> ' , 'result' , _])
gui.run()

This code is enough to display a GUI with three widgets. Let’s see
what each line does.

from Guietta import Gui, _

Every GUI made with Guietta is an instance of the Gui class, so we
need to import it. We also use the special underscore _, explained later,
so we import it too.

gui = Gui(['Enter number' , '__num__' , ['Go']],
 ['Result ---> ' , 'result' , _])

Arguments to the Gui constructor define the GUI layout.
The layout is specified with a series of Python
lists [https://docs.python.org/3/tutorial/introduction.html#lists],
one for each widget row. Our example has two rows, so
there are two lists. Each list element
must be a valid widget. Here we see four different ones:

	'Enter number': a string will be converted to a simple text display
(in GUI parlance it is called a label). It is possible to change
the text later on.

	'__num__': a string starting and ending with double underscores
will be converted to an edit box (imagine a form to be filled out).
The edit box is initially empty.

	['Go']: a string inside square brackets will be converted
to a button that the user can click. The button’s text can also be
changed later if wanted.

	_: an underscore means no widget.

Notice how we formatted the lists to keep things aligned. You are
encouraged to use spaces to make the GUI layout visible right in the code.

The constructor will create all these widgets and arrange them
in a regular grid. At this point, the GUI is ready to be displayed.

gui.run()

This line displays the GUI and starts the QT event loop. This function
will not return until the GUI is closed (there are ways around this, and
we will see them later). If you try the GUI, you will notice that
the Go button does nothing, since we did not assign it any function.
We will see how to do that in the next chapters.

Guietta’s magic properties

Each GUI widget is assigned a name, which is usually automatically
derived from the constructor: any text-based widget has a name that corresponds
to the initial widget text. Special characters in the text are removed
in order to be sure that the resulting name is a valid Python identifier.
In practice, this means that letters a-Z, A-Z, numbers 0-9 and underscores
are kept, preserving case, and everything else is removed, including spaces:

gui = Gui(['This is button 2!'])

gui.Thisisbutton2 = 'new text'

The GUI shown in the previous chapter will have five widgets:
“Enternumber”, “num”, “Go”, “Result”, and “result”. If a name is a duplicate,
it is auto-numbered starting with the number 2.

In case the widget name becomes too long, guietta supports a tuple syntax
to set a custom name:

gui = Gui([('Very very long label text', 'short_name')])

gui.short_name = 'new text'

The tuple syntax can be used with any supported widget. The general form
is (QWidget, ‘name’), where QWidget can be any of the supported
widget generation syntax (strings to create labels, etc.)

All widgets are available in the widgets dictionary, so it is possible
to use all ordinary QT methods:

gui.widgets['result'].setText('foo')

but Guietta makes it much easier, by automatically creating magic properties
for the widgets:

gui.result = 'foo'

Magic properties are not real Python properties, because they are not defined
in the class but instead are emulated using getattr/setattr, but behave
in the same way. Properties can be read too:

labeltext = gui.Enternumber

Labels can be assigned anything:

gui.result = 3.1415
gui.result = ['a', 'b', 'c']
gui.result = dict(a=1, b='bar', c=None)

A list will result in a multi-line label, one element per line. A dictionary
will be displayed using two columns, one item per line, with keys on the left
column and values on the right one. Anything else is converted to a string
using str() on the value being assigned.

Magic properties work for buttons and other widgets too, but with different
object types. For example,
a button will accept a callable that will be called when the button
is clicked. A complete list of property types is available in the
reference guide.

A special case where magic properties are also used are dynamical layouts,
described in more detail here.

Working with normalized names

It is possible to obtain the name corresponding to a certain text
using the normalized() module-level function:

from guietta import normalized

print(normalized('This is button 2!'))

this code will return ‘thisisbutton2’.

It is also possible to recover the original text that was used to create
the widget, given the normalized name (this can be useful when using the
get() feature, described later, that returns the normalized name). The
Gui.names property is a mapping that provides the original name:

gui.names['thisisbutton2']

would return ‘This is button 2!’.

normalized() and names were added in version 0.4.

GUI actions

There are several ways to assign actions. Most rely on QT concept of
event: an event is something that happens to a widget (for example,
a button is clicked), and this event causes some piece of code to be
executed. Events only work if the QT event loop has been started,
which is done automatically by gui.run(). The “GUI queues” chapter
later on describes how one can work without the event loop, if desired.

The events layer

The canonical Guietta way to specify events is to add a layer to the gui,
using the events() method:

gui = Gui(['Enter number' , '__num__' , ['Go']],
 ['Result ---> ' , 'result' , _])

gui.events([_ , _ , recalc],
 [_ , _ , _])

Notice how we have kept exactly the same layout for the Gui constructor
and the events() method. This makes immediately visible that the recalc
event has been assigned to the Go button, while other widgets are ignored.

An event assigned this way can be any Python callable,
thus we need to define a recalc function before the gui is constructed:

def recalc(gui, *args):
 gui.result = float(gui.num)*2

The first argument to an event function is always the gui instance that
generated the event. Other arguments may be added depending on the QT signal
that generated the event. Since we are not interested in them, we put a
generic *args there.

The recalc function is updating the Gui using the magic properties
described in the previous chapter. Since the properties always return strings,
it uses float() to convert the string to a number.

Custom events

In QT, a single widget can have several different events. For example,
an edit box can trigger an event every single time the text is changed,
or just when Return is pressed. Guietta assigns to each widget a
default event, which is the one that makes sense most of the time
(the list of default events for each widget is listed in the
reference guide).

It is possible to specify a custom event using the tuple syntax:

gui = Gui(['Enter number' , '__num__' , ['Go']],
 ['Result ---> ' , 'result' , _])

gui.events([_ , ('textEdited', recalc) , recalc],
 [_ , _ , _])

The tuple must be (‘event_name’, callable). The event name must be a valid
one for the widget, and a list can be found in the QT documentation, where
it is called a signal. The QT documentation lists the possible
signals for each widget, for example for edit boxes [https://doc.qt.io/qt-5/qlineedit.html], in the “Signals” chapter.

Here we are assigning the recalc function to the textEdited event,
which is fired every time the text in the editbox is updated by the user.
Try it and you should see the value in the result label updating
at every keystroke.

Assign a callable

Buttons (ordinary buttons, checkboxes and radio buttons, that in QT are
all derived from QAbstractButton) can be assigned any python callable using
Guietta’s magic properties:

def handler(gui, *args):
 print('handler!')

gui.mybutton = handler

Due to how the QT signal/slots mechanism works, it is not possible to read
the same property to get the button handler.

Automatic events

If your GUI events are relatively simple, you might be able to do away
with their definitions entirely, using the gui.auto decorator:

@gui.auto
def recalc(gui, *args):
 gui.result = float(gui.num)*2

gui.run()

When the “auto” decorator is used, Guietta will inspect the function code,
detect any property read like the gui.num above (but not the
gui.result, which is a property store), and automatically connect
the decorated function to the default event of that widget. Since the default
event for editboxes is returnPressed, the above code will run every time
the user presses Return on the editbox. The Go button at this point
could be removed.

Notice that the auto decorator is a member of a Gui instance, and not
a standalone one. Thus any decorated function must be declared after
the gui is constructed.

Note

due to how the code introspection features work (from the
standard library
inspect [https://docs.python.org/3/library/inspect.html]
module) the @auto decorator will not work on the
Python command prompt.

The with statement

We saved the best for last. Enter the with statement:

with gui.Go:
 gui.result = float(gui.num)*2

gui.run()

The “with magic property” statement will save the code block and execute
it when the corresponding widget, in this case the Go button, fires its
default event.

The as clause refers to the same widget, which is useful if the with block
needs to refer to the widget itself:

with gui.widgetWithVeryLongName as w:
 gui.result = w.text()

Multiple with blocks can be defined, and multiple widgets can be
listed in a single with block, without limits:

with gui.a, gui.b:
 gui.result = float(gui.a) + float(gui.b)

If multiple widgets are listed, the as clause, if present,
will refer to the last widget in the list.

While extremely simple and intuitive, this style has a number of caveats:

	signal arguments are not supported. The example above was a mouse click,
but for example a valueChanged() signal from a slider would not have
transferred the new slider value.

	nested with statements will not work

	like the @auto decorator above, it is not guaranteed to work on
a Python prompt. It works on the standard Python one, but for example
will not work with some versions of IPython.

	the code inside with block is also executed once when it is encoureted
for the first time, before gui.run() is called.
This is unavoidable due to how code is parsed by
Python. Most probably, it will generate an exception (in this case,
because the gui.num content cannot be converted to a float object),
and the guietta’s with code block will discard all such exceptions.

It is possible to protect such a code block using Guietta’s is_running
attribute:

with gui.Go:
 if gui.is_running:
 gui.result = float(gui.num)*2

this way, one is sure that the code will be executed only under gui.run(),
but most of the time there is no need.

Explicit connect

Most of the above action assignments end up calling guietta.connect(),
which has the following signature:

guietta.connect(widget, signal_name='default', slot=None)

It can be used to explicitly connect a certain widget instance
to the callable slot, when the signal signal_name is emitted.

Exception handling

You may have noticed that, in our events example above, there was
no exception catching in the event functions.
Guietta by default catches all exceptions and pops a warning up to the user
if one happens. This behavior can be modified with the
guietta.Exceptions enum, which has four values:

	Exceptions.POPUP: the default one, a warning popup is shown

	Exceptions.PRINT: the exception is printed on standard output

	Exceptions.SILENT: all exceptions are silently ignored

	Exceptions.OFF: no exception is caught, you have to do all the work.

The value must be given to the Gui constructor using the exceptions
keyword argument:

from guietta import Gui, _, Exceptions

gui = Gui(['Enter number' , '__num__' , ['Go']],
 ['Result ---> ' , 'result' , _],
 exceptions = Exceptions.SILENT) # Ignore exceptions

The exceptions keyword can also accept any Python callable. In this case,
when an exception occurs the callable will be called with the exception
as an argument.

GUI queues

A completely different way of getting events out of the guis is to use
Guietta’s get() method instead of run().

With get(), the GUI behaves like a
queue [https://docs.python.org/3/library/queue.html]
of events. These events are exactly the same as the ones we have seen
before, but instead of triggering a function or a with block, they
are put into an internal queue.

get() blocks until an event happens. It returns the name of the widget
that generated the event, plus an Event object with additional information
about the event:

name, event = gui.get()

By the way, get() automatically shows the GUI if had not been shown before.

If you try to call gui.get() and click on the Go button,
you should see something like this:

>>> gui.get()
('Go', Event(signal=<bound PYQT_SIGNAL clicked of QPushButton object at 0x7fef88dc9708>, args=[False]))

here we see that the event name was Go, as expected, and the Event object
tells us some details about the QT signal. Most of the time, we do not
need to even look at the detailed information.

If instead you call gui.get() and click the X to close the window,
the result will be:

>>> gui.get()
(None, None)

This is how we discover that the user has closed the window.

Note

if you have clicked multiple times on the Go button
in between
the get() calls, you will have to call gui.get()
the same number of times before getting (None, None),
because you have to empty out the event queue.

The usual way of using get() is to put it into an infinite loop,
breaking out of it when we get None:

while True:
 name, event = gui.get()

 if name == 'Go':
 print('You clicked Go!')
 gui.result = float(gui.num)*2

 elif name == None:
 break

It is important to keep whatever is done in the loop very short, because
for the whole time we are outside get(), the GUI is not responsive to
user clicks and will not be redrawn if dragged, etc.

A word on exceptions

If you have tried the previous code clicking Go without entering
a number before, or entering something else like a letter, the loop
will have exited with an exception caused by the failed float() call.

This happens because, when using get(), the exception catching described
above is not used. Instead, we should be
prepared to catch any exception generated by the code. Rather than using
a big try/except for the whole loop, it is best to put the the exception
handling right where it is needed, in order to be able to display a
meaningful error message to the user. Something like this:

if name == 'Go':
 try:
 gui.result = float(gui.num)*2
 except ValueError as e:
 gui.result = e

Notice how we are displaying the error message right in the GUI.

Non-blocking get

The get() call shown before blocks forever, until an event arrives.
However the call syntax is identical to the standard library
queue.get [https://docs.python.org/3/library/queue.html#queue.Queue.get]
call:

Gui.get(self, block=True, timeout=None)

If we pass a timeout argument (in seconds), the call will raise a
guietta.Empty exception if timeout seconds have passed without a event.
This feature is useful to “wake up” the event loop and perform some tasks
regularly. Just for demonstration purposes, this loop re-uses the
Enter number label to show a counter going up an 10 Hz. while still
being responsive to the Go button:

from guietta import Empty

counter = 0
while True:
 try:
 name, event = gui.get(timeout=0.1)
 except Empty:
 counter += 1
 gui.Enternumber = counter
 continue

 if name == 'Go':
 try:
 gui.result = float(gui.num)*2
 except ValueError as e:
 gui.result = e

 elif name is None:
 break

Notice the continue statement in the except clause. If it was not there,
execution would have progressed to the if statement below, and the
handler for the Go button might be executed multiple times.

Using images

Labels and buttons can display images instead of text: just write the
image filename as the label or button text, and if the file is found,
it will be used as an an image. By default, images are searched in the
current directory, but the images_dir keyword argument can be supplied
to the Gui constructor to change it. So for example:

import os.path
from guietta import Gui, _

gui = Gui(

 [_ , ['up.png'] , _],
 [['left.png'] , _ , ['right.png']],
 [_ , ['down.png'] , _],

 images_dir = os.path.dirname(__file__))

This code will display four image buttons arranged in the four directions,
provided that you have four PNG images with the correct filename
in the same directory as the python script. Notice how we use os.path
to get the directory where our script resides.

Radio buttons

Radio buttons can be created using the R() widget, which stands for a
QRadioButton() instance. By default, all radio buttons in a single Gui
instance are exclusive. If multiple radio buttons groups are desired, Guietta
makes available ten pre-defined widgets classes called R0, R1, R2 … R9,
which will create radio buttons belonging to one of the 10 groups.
For example:

from guietta import Gui, R1, R2, R3

gui = Gui(
 [R1('rad1') , R2('rad3') , R3('rad5')],
 [R1('rad2') , R2('rad4') , R3('rad6')],
)

gui.run()

That code creates six radio buttons, belonging to three different
exclusive groups arranged vertically.

The radio buttons example [https://github.com/alfiopuglisi/guietta/blob/master/guietta/examples/radio.py] shows how
to connect radio buttons to events and how to check if a radio button
is checked or not.

Radio button text will be modified with the same rules for every other widgets,
see Guietta’s magic properties.

Pre-defined radio buttons were introduced in version 0.3.4.

Special layouts

Sometimes we would like for a widget to be bigger than the others,
spanning multiple rows or columns. For example a label with a long text,
or a horizontal or vertical slider, or again a plot made with Matplotlib
should occupy most of the window. The following example introduces two
new Guietta symbols, ___ (three underscores) and III (three
capital letter i) which are used for horizontal and vertical expansion:

from guietta import Gui, _, ___, III, HS, VS

gui = Gui(

 ['Big label' , ___ , ___ , VS('slider1')],
 [III , III , III , III],
 [III , III , III , III],
 [_ , 'a label' , 'another label' , _],
 [HS('slider2'), ___ , ___ , _]
)

We also introduce the new widgets HS (horizontal slider) and
VS (vertical slider). The rules for expansion are:

	a widget can be continued horizontally to the right with ___
(the HS widget shown above)

	a widget can be continued vertically below with III
(the VS widget shown above)

	the two continuations can be combined as shown for ‘Big label’
to obtain a big rectangular widget (here ‘Big label’ is a 3x3 widget).
The widget must be in the top-left corner in the layout, while
in the GUI it will appear centered.

The additional labels have been inserted to expand the layout. Without them,
QT would have compressed the empty rows and columns to nothing.

Matplotlib

Matplotlib provides a QT-compatible widget. Guietta wraps it into its
M() widget:

from guietta import Gui, M, ___, III, VS

gui = Gui(

 [M('plot') , ___ , ___ , VS('slider')],
 [III , III , III , III],
 [III , III , III , III],
 [III , III , III , '^^^ Move the slider'],
)

Here we define a big M widget, giving it the name plot.
If a static plot was wanted, we could now directly draw into it. But
since we like flashy things, we will make a plot that updates based
on the slider position.

The M() widget has a magic property to refresh the plot: if you assign
it a numpy array, it will just replot itself. If the array is 2d, it will
use imshow(). Here is a simple callback to redraw the plot:

import numpy as np

def replot(gui, value):
 t = np.linspace(0, 1+value/10, 500)
 gui.plot = np.tan(t)

The callback, as usual, has the gui as its first argument. Since we intend
to connect it to the slider, it also has a value argument, that will be
the slider position. Guietta’s sliders are basic QT sliders with a value
that can go from 0 to 99 included.

If more control is needed, one could manually draw onto the widget:

import numpy as np

def replot(gui, value):

 ax = gui.plot.ax
 ax.clear()
 ax.set_title('y=tan(x)')
 t = np.linspace(0, 1+value/10, 500)
 ax.plot(t, np.tan(t), ".-")
 ax.figure.canvas.draw()

The callback can find the axis to draw on using “gui.<widgetname>.ax”.
It then proceeds to clear the axis and use normal Matplotlib commands.
At the end, the canvas is redrawn.

Note

it is important to clear the axis before starting, otherwise
the old plots will still be there and, in addition to confuse
the drawing, things will slow down a lot very quickly because
Matplotlib will be still redrawing all of them.

To simplify these requirements, Guietta provides a
context manager [https://docs.python.org/3/library/stdtypes.html#typecontextmanager]
that handles the clearing and redrawing. Thus the above callback
can be simplified to this:

from guietta import Ax

def replot(gui, value):

 with Ax(gui.plot) as ax:
 ax.set_title('y=tan(x)')
 t = np.linspace(0, 1+value/10, 500)
 ax.plot(t, np.tan(t), ".-")

We now need to connect this callback to our slider:

gui.events(

 [_ , _ , _ , replot],
 [_ , _ , _ , _],
 [_ , _ , _ , _],)

and run the GUI:

replot(gui, 1)
gui.run()

Notice how we first call the callback ourselves, giving it a default
value, in order to have a plot ready when the GUI is displayed.

Multiple plots

The M() widget has an optional subplots keyword:

M('myplot', subplots=(2,3))

this will create a widget with 6 subplots organized in two rows.
The guietta.myplot.ax member will be the return value from the
subplots call, so it will be two lists with three ax objects each.

Note

if the subplots keyword is set to any value different
from its default, the Ax context manager cannot be used.

Pyqtgraph

pyqtgraph is a plotting module with less features than matplotlib, but
much faster. It is ideal if the graph must be updated frequently. Guietta
wraps it into its PG() widget:

import numpy as np
from guietta import Gui, PG, ___, III, _, VS

gui = Gui(
 [PG('myplot'), ___, ___, VS('slider')],
 [III , III, III, III],
 [III , III, III, III],
 [III , III, III, '^^^ Move the slider'],
)

Replotting in pyqtgraph is much simpler than in matplotlib: we just have
to call the widget’s plot() method, setting clear=True to ensure that
the previous plot is erased:

with gui.slider:
 t = np.linspace(0, 1+gui.slider/10, 500)
 gui.myplot.plot(t, np.tan(t), clear=True)

Now we initialize the plot with a default one, and run the gui:

gui.slider = 1
gui.run()

It is also possible to use the PG widget’s magic property, which accepts
1d numpy arrays:

gui.myplot = np.arange(100)

If something more complex is needed, remember that pyqtgraph are full-featured
QT widgets, so they can be instantiated and dropped into Guietta without
the need to use the PG() wrapper.

Support for pyqtgraph was introducted in version 0.3.5.

Images

For displaying images, the PGI() widgets provides a pyqtgraph.ImageView
widget. 2d numpy arrays can be assigned to its property:

gui = Gui([PGI('myimage')])
gui.myimage = np.arange(100).reshape((10,10))

Support for pyqtgraph images was introducted in version 0.3.9.

Splash screens

Guietta supports extremely basic splash screens, with the guietta.splash
function:

	
guietta.splash(text, textalign=<PySide2.QtCore.Qt.Alignment object>, width=None, height=None, color=PySide2.QtCore.Qt.GlobalColor.lightGray, image=None)

	Display and return a splash screen.

This function displays a splashscreen and returns a QSplashScreen instance.

The splashscreen must be closed with close() or finish(gui.window()).
Alternatively, it will close when the user clicks on it.

The splash function was introducted in version 0.3.1.

Advanced topics

Background processing

Sometimes a handler function needs to run for a long time, and during
that time the GUI would be frozen. In order to avoid this, the Gui class
allows to span a function into a background thread. Once the function
is done, an optional callback in the main thread will be triggered.

	
guietta.Gui.execute_in_background(self, func, args=(), callback=None)

	Executes func in a background thread and updates GUI with a callback.

When func is done, the callback is called in the GUI thread.
The callback receives a reference to this Gui instance as the first
argument, plus whatever was returned by func as additional
arguments.

Working with threads

If your Python program uses multiple threads, using the background processing
feature described above or your own threads, be aware that QT restricts
any GUI update to the main thread (that is, the one that created the GUI
and runs the event loop, in other words, that called gui.run() or
gui.get()). Undefined behaviour can result otherwise, including random
crashes.

All magic properties automatically use the main thread
to update the GUI, even if called from other threads, so you don’t need
to worry about this.

If instead you access the widgets dictionary directly, as described above:

gui.widgets['result'].setText('foo')

make sure that this call runs on the main thread.

The automatic threading management for magic properties can be turned off
using the manage_threads argument to the guietta.Gui class.

Define magic properties for custom widgets

Guietta’s properties work on any widget that respects the following
protocol:

	defines a __guietta_property__() method

	that returns a tuple with two callables: get() and set(value).

Note that get() and set() are just conventional names,
actual functions can have a different name. The get function must
take no arguments and return the value. The set function must
take exactly one positional value, and the return value (if any)
is ignored.

The following example shows a widget where the property is a
number shown as text:

class MyLabel(QLabel):
 def __init__(self):
 super().___init__('0')

 def __guietta_property__(self):
 def get_number():
 return float(self.getText())

 def set_number(num):
 self.setText('%5.3f' % num)

 return (get_number, set_number)

The set() function is automatically decorated by gueitta in order to
support the with context manager and multithreading (using the
guietta.execute_in_main_thread and guietta.undo_context_manager decorators).
If desired,
you can avoid setting these decorators setting _guietta_decorators
to False in your widget class or instance:

class MyLabel(QLabel):
 _guietta_decorators = False

It will be then your responsibility that the custom widget is able to
work in multithreaded QT programs.

Property proxies

If a widget is created with a text generated dynamically, it will not be
possible to use a magic property as described above:

row = ['label%d'%x for x in range(10)]
gui = Gui(row)

if now we want to address all labels, we would need to write explicitly:

gui.label0 = 'foo'
gui.label1 = 'bar'
...

Guietta allows to retrieve a proxy for the widget properties. It is a
class called guietta.GuiettaProperty, with two attributes: get()
and set(), the latter taking a single argument:

p = gui.proxy('label0')
p.set('foo')
a = p.get() # a is now 'foo'

which could be used as follows:

for x in range(10):
 gui.proxy('label%d'%x).set('foo %d' % x)

Property proxies were introduced in version 0.4.

Property contexts

If you have tried to run the previous example from the command prompt,
you will have seen the following output when calling set():

...
<guietta.guietta._returnUndoContextManager.<locals>.decorator.<locals>.wrapper.<locals>.InnerUndoContextManager object at 0x7f188487a5c0>
...

This is expected. The set() call can be used as a context manager to
temporarily replace the widget contents with something else. When the context
manager exists, the widget contents are automatically restored:

gui.status = 'idle'
label = gui.proxy('status')
...
with label.set('busy'):
 ... do something

the label will show “busy” while the statements inside the with block are
executed, and will revert back to “idle” afterwards.

Property contexts were introduced in version 0.4.

Using other QT classes

Guietta makes available several other useful QT classes (like QFileDialog)
without the need to import directly from PySide2:

from guietta import QFileDialog

a complete list is available in the
reference guide.

Hierarchical GUIs

Sometimes you want to insert a Gui inside another one, for example
in a program that builds its interface dynamically from basic GUI building
blocks. Guietta supports it as a special case of its magic properties:

gui.label = another_gui

if gui and another_gui are two guietta.Gui instances, the gui.label
widget (which could be any kind of widget) will be removed, and in its place
the entire another_gui layout will appear, complete with all its widgets

The sub_layout example [https://github.com/alfiopuglisi/guietta/blob/master/guietta/examples/sub_layout.py]
shows this trick in action.

Groupboxes

Sub-layouts are commonly associated with group boxes, that draw a rectangle
with a title around a window section. Guietta supports the QGroupBox widget
with its G widget, which can be assigned directly another Gui instance:

gui = Gui([G('my group')])

gui.mygroup = another_gui

Instead of replacing the whole widget, this code will show the
child Gui instance inside the group box, keeping it visible.

See also the groupbox example [https://github.com/alfiopuglisi/guietta/blob/master/guietta/examples/groupbox.py]

Packaging your application

Guietta runs perfectly fine if you have a Python interpreter, but sometimes
you want to package a self-contained program which is able to run without
dependencies. Guietta does not provide anything specific, but there are
several programs that can do this for generic Python applications. One
such program is
PyInstaller [https://doc.qt.io/qtforpython/deployment-pyinstaller.html].

Please note that PyInstaller is an independent project and we cannot
give any guarantee that it will work, nor provide any support.

Next topic: the reference guide.

Reference

Layout

Guietta uses a grid layout (QGridLayout). Number of rows and columns
is automatically calculated from the input. There is typically one widget
per grid cell (_ will result in an empty cell), but widgets may span
multiple rows and/or columns as described below.

Syntax

To create a layout, instantiate a guietta.Gui object and pass it a series
of lists. Each list corresponds to a row of widgets. All lists must have
the same length.

As a special case, if a list contains a single widget, the widget will
be expanded to fill the whole row. This is useful for titles and
horizontal separators.

Widgets

Here is the complete widget set:

from guietta import Gui, B, E, L, HS, VS, HSeparator, VSeparator
from guietta import Yes, No, Ok, Cancel, Quit, _, ___, III

gui = Gui(

 ['<center>A big GUI with all of Guietta''s widgets</center>'],
 [HSeparator],

 ['Label' , 'imagelabel.jpeg' , L('another label') , VS('slider1')],
 [_ , ['button'] , B('another button') , III],
 ['__edit__' , E('an edit box') , _ , VSeparator],
 [Quit , Ok , Cancel , III],
 [Yes , No , _ , III],
 [HS('slider2'), ___ , ___ , _])

gui.show()

	Syntax

	Equivalent Qt widget

	Event name

	_

	nothing (empty layout cell)

	none

	
‘text’

L(‘text’)

	QLabel(‘text’)

	‘text’

	
‘image.jpg’

L(‘image.jpg’)

	QLabel with QPixmap(‘image.jpg’)

	‘image’

	
[‘text’]

B(‘text’)

	QPushButton(‘text’)

	‘text’

	
[‘image.jpg’]

B(‘image.jpg’)

	QPushButton(QIcon(‘image.jpg’), ‘’)

	‘image’

	‘__name__’

	QLineEdit(‘’), name set to ‘name’

	‘name’

	E(‘text’)

	QLineEdit(‘text’)

	‘text’

	C(‘text’)

	QCheckBox(‘text’)

	‘text’

	R(‘text’)

	QRadioButton(‘text’)

	‘text’

	P(‘name’)

	QProgressBar()

	‘name’

	G(‘title’)

	QGroupBox(‘title’)

	‘title’

	HS(‘name’)

	QSlider(Qt::Horizontal)

	‘name’

	VS(‘name’)

	QSlider(Qt::Horizontal)

	‘name’

	HSeparator

	Horizontal separator

	

	VSeparator

	Vertical separator

	

	M(‘name’)

	Matplotlib FigureCanvas*

	

	PG(‘name’)

	pyqtgraph PlotWidget*

	

	PGI(‘name’)

	pyqtgraph ImageView*

	

	widget

	any valid QT widget

	none

	(widget, ‘name’)

	any valid QT widget

	‘name’

	Matplotlib or pyqtraph will only be imported if the M(), PG() or PGI() widgets
are used. Matplotlib and pyqtgraph are not is not installed automatically
together with guietta. If the M() widget is used, the user must install
matplotlib manually, same for PG() and pyqtgraph.

Buttons support both images and texts at the same time:

	Syntax

	Equivalent Qt widget

	Event name

	
[‘image.jpg’, ‘text’]

B(‘image.jpg’, ‘text’)

	QPushButton()
with image and text

	‘text’

Continuations

How to extend widgets over multiple rows and/or columns:

from guietta import Gui, HS, VS, _, ___, III

gui = Gui(

 ['Big label', ___ , ___ , 'xxx' , VS('s1')],
 [III , III , III , 'xxx' , III],
 [III , III , III , 'xxx' , III],
 [_ , _ , _ , 'xxx' , III],
 [HS('s2') , ___ , ___ , ___ , _])

	Syntax

	Meaning

	_

	nothing (empty layout cell)

	(three underscores) Horizontal widget span

	III

	(three capital letters i) vertical widget span

Rules:

	all grid cells must contain either a widget, one of ___ or III,
or _ if the cell is empty. Other values will cause a ValueError
exception. Empty elements are not allowed by the Python list syntax
and will cause a SyntaxError.

	___ can only be used to the right of a widget to extend it

	III can only be used below a widget to extend it

	___ and III can be combined to form big rectangular widgets,
with the widget to be extended in the top-left corner.

Signals

Signals can be connected with gui.events() where each widget has:

	Syntax

	Meaning

	_

	no connection

	slot

	reference to Python callable, using the default
widget signal (if pre-defined, otherwise ValueError)

	(‘textEdited’, slot)

	tuple(signal name, Python callable)

Table of default signals:

	Widget

	Signal

	QPushButton

	clicked(bool)

	QLineEdit

	returnPressed()

	QCheckBox

	stateChanged(int)

	QRadioButton

	toggled())

	QAbstractSlider
(QSlider, QDial,
QScrollBar)
QProgressBar

	valueChanged(int)

	QListWidget

	currentTextChanged

	QComboBox

	textActivated

Widgets not listed in this table must be connected using the tuple syntax.

Properties

Table of properties created for each widget type:

	Widget

	Read property type

	Write property type

	QLabel,
QLineEdit
QGroupBox

	str

	str

	QAbstractButton
(QPushButton,
QCheckBox,
QRadioButton)

	widget instance

	callable

	QAbstractSlider
(QSlider, QDial,
QScrollBar)
QProgressBar

	int

	int

	QAbstractItemView
(QListWidget)

	list of str

	list of str

	QComboBox

	dict{str: any}

	dict{str: any}

	Matplotlib widgets

	widget instance

	1d and 2d array-like

	Everything else

	widget instance

	raises an exception

All write properties accept a guietta.Gui instance. For all widgets except
QGroupBox, such a write will cause the widget to be replaced by the new Gui’s
main QWidget, while the original widget will be hidden using hide(). For
QGroupBox, its setLayout() method will be called using the new Gui layout
as the argument.

Exception catching in slots

When a slot is called, they will be enclosed in a “try - except Exception”
block. What happens in the except clause depends on the “exceptions”
keyword parameter of the GUI constructor, which accepts the following enums:

	Enum

	Exception handling

	Exceptions.OFF

	nothing, exception is re-raised

	Exceptions.POPUP (default)

	popup a QMessageBox.warning
with the exception string

	Exceptions.PRINT

	exception string printed on stdout

	Exceptions.SILENT

	nothing, exception is “swallowed”

QT symbols in Guietta

List of QT symbols defined in guietta. These symbols can be imported like
from guietta import x instead of importing from PySde2:

from PySide2.QtWidgets import QApplication, QLabel, QWidget, QAbstractSlider
from PySide2.QtWidgets import QPushButton, QRadioButton, QCheckBox, QFrame
from PySide2.QtWidgets import QLineEdit, QGridLayout, QSlider, QAbstractButton
from PySide2.QtWidgets import QMessageBox, QListWidget, QAbstractItemView
from PySide2.QtWidgets import QPlainTextEdit, QHBoxLayout, QComboBox
from PySide2.QtWidgets import QSplashScreen, QFileDialog, QButtonGroup
from PySide2.QtWidgets import QProgressBar, QGroupBox
from PySide2.QtGui import QPixmap, QIcon, QFont
from PySide2.QtCore import Qt, QTimer, Signal, QEvent

Gui class reference

	
class guietta.Gui(*lists, images_dir='.', create_properties=True, exceptions=<Exceptions.POPUP: 3>, persistence=1, title='', font=None, manage_threads=True)

	Main GUI class.

The GUI is defined passing to the initializer a set of QT widgets
organized in rows of equal length. All other methods that expect
lists (like events() or names()) will expect a series of list with
the same length.

Every widget will be added as an attribute to this instance,
using the widget text as the attribute name (removing all special
characters and only keeping letters, numbers and underscores.)

	
auto(func)

	Auto-connection decorator.

Analyzes a function and auto-connects the function
as a slot for all widgets that are accessed in the function itself.

	
close(dummy=None)

	Closes the window

	
column_stretch(*lists)

	Defines the column stretches

Arguments are lists as in the initializer. Since typically all
rows have the same stretch, it is allowed to define just one or only
a few rows in this method.

Every element must be a number, that will be passed to the
setColumnStretch() QT function, or _ if no particular stretch
is desired.

	
enable_drag_and_drop(from_, to)

	Enable drag and drop between the two widgets

	
events(*lists)

	Defines the GUI events.

Arguments are lists as in the initializer. It is allowed to define
just one or only a few rows in this method, if for example
the last rows do not contain widgets with associated events.

Every element is a tuple with:

(‘signal_name’, slot)

where ‘signal_name’ is the name of the QT signal to be connected,
and slot is any Python callable. Use _ for widgets that do not
need to be connected to a slot.

If just the default signal is wanted, ‘signal_name’ can be omitted
and just the callable slot is required (without using a tuple).

Bound methods are called without arguments. Functions and
unbound methods will get a single argument with a reference
to this Gui instance.

	
execute_in_background(func, args=(), callback=None)

	Executes func in a background thread and updates GUI with a callback.

When func is done, the callback is called in the GUI thread.
The callback receives a reference to this Gui instance as the first
argument, plus whatever was returned by func as additional
arguments.

	
execute_in_main_thread(f, *args)

	Make sure that f(args) is executed in the main GUI thread.

If the caller is running a different thread, the call details
are packaged into a QT event that is emitted. It will be eventually
received by the main thread, which will execute the call.

	
fonts(*lists)

	Defines the fonts used for each GUI widget.

Arguments are lists as in the initializer. It is allowed to define
just one or only a few rows in this method, if for example
the last rows do not contain widgets whose fonts need not
to be modified.

Every element is either a QFont instance, a string with a font
family name (.e.g ‘Helvetica’), or a tuple with the QFont
constructor elements: family string, point size, weight, and italic,
int that order. All except the family string are optional, point size
and weight ar integers, and italic is a boolean True/False. All these
specifications are valid:

	QFont(‘helvetica’, pointSize=12)

	‘helvetica’

	(‘helvetica’, 12, 1, True)

Use _ for widgets that do not need their fonts to be changed.

	
get(block=True, timeout=None)

	Runs the GUI in queue mode

In queue mode, no callbacks are used. Instead, the user should call
gui.get() in a loop to get the events and process them.
The QT event loop will stop in between calls to gui.get(), so
event processing should be quick.

Every time an event happens, get() will return a tuple:

name, event = gui.get()

where name is widget name that generated the event, and event
is a namedtuple with members signal (the PyQT signal)
and args which is a list of signal arguments, which may be empty
for signals without arguments.

get() will return (None, None) after the gui is closed.

	
get_selections(name)

	Returns the selected items in widget name.
Raises TypeError if the widget does not support selection.

	
import_into(obj)

	Add all widgets to obj.

Adds all this Gui’s widget to obj as new attributes.
Typically used in classes
as an alternative from deriving from Gui.
Duplicate attributes will raise an AttributeError.

	
iter()

	Returns an interable for GUI events

for name, event in gui.iter():

	
layout()

	Returns the GUI layout, containing all the widgets

	
names

	Read-only property with the normalized -> original mapping

	
proxy(name)

	Returns the guietta property for the a (normalized) widget name.

A guietta property is an instance of the GuiettaProperty class,
with two attributes: get() and set()

	
rename(*lists)

	Overrides the default widget names.

Arguments are lists as in the initializer. It is allowed to define
just one or only a few rows in this method, if for example
the last rows do not contain widgets that must be renamed.

Every element is a string with the new name
for the widget in that position. Use _ for widgets that do not
need to be renamed.

	
row_stretch(*lists)

	Defines the row stretches

Arguments are lists as in the initializer. Since typically all
rows have the same stretch, it is allowed to define just one or only
a few rows in this method.

Every element in the lists must be a number, that will be passed to the
setRowStretch() QT function, or _ if no particular stretch is desired.

	
run()

	Display the Gui and start the event loop.

This call is blocking and will return when the window is closed.
Any user interaction must be done with callbacks.

	
show()

	Shows the GUI. This call is non-blocking

	
title(title)

	Sets the window title

	
widgets

	Read-only property with the widgets dictionary

	
window()

	Returns the window containing the GUI (an instance of QWidget).
If the window had not been built before, it will be now.

	
class guietta.GuiettaProperty(get, set, widget, add_decorators=True)

	Holds the get/set methods for a Guietta magic property.

Initialize with two callables, get and set():

get() - returns the property value
set(x) - sets the property to x

widget must be a reference to the widget for which the property is
being set.

The set() method is automatically decorated with
guietta.execute_in_main_thread and guietta.undo_context_manager.
Set add_decorators to False to avoid this. In this case, the
widget parameter is ignored.

Module-level functions reference

	
guietta.normalized(name)

	Returns the given name without any special characters or spaces.

Only a-zA-Z0-9 and _ will be kept

	
guietta.splash(text, textalign=<PySide2.QtCore.Qt.Alignment object>, width=None, height=None, color=PySide2.QtCore.Qt.GlobalColor.lightGray, image=None)

	Display and return a splash screen.

This function displays a splashscreen and returns a QSplashScreen instance.

The splashscreen must be closed with close() or finish(gui.window()).
Alternatively, it will close when the user clicks on it.

	
guietta.Ax(widget)

	Context manager to help drawing on Matplotlib widgets.

Takes care of clearing and redrawing the canvas before and after
the inner code block is executed:

with Ax(gui.plot) as ax:
 ax.plot(...)

	
guietta.M(name, width=5, height=3, dpi=100, subplots=(1, 1), **kwargs)

	A Matplotlib Canvas widget

The **kwargs accepts additional keywords that will become function
calls every time the Ax decorator is used. For example, adding the
argument set_ylabel='foo', will result in this function call:
ax.set_ylabel('foo')

Creating an object of this class will import the matplotlib module.

	
guietta.PG(name, **kwargs)

	A pyqtgraph PlotWidget.

Creating an object of this class will import the pyqtgraph module.

	
guietta.PGI(name, **kwargs)

	A pyqtgraph ImageView.

Creating an object of this class will import the pyqtgraph module.

	
guietta.execute_in_main_thread(gui)

	Decorator that makes sure that GUI methods run in the main thread.

QT restricts GUI updates to the main thread (that is, the thread that
created the GUI). In order to allow updating
the GUI from other threads, any function that does so can be decorated:

@execute_in_main_thread(gui)
def myfunc(gui, widget, text):
 widget.setText(text)

The decorator checks the current thread and, if different from the
main GUI thread, wraps the function call into a QT event that will
be eventually received and processed by the main GUI thread. Otherwise,
the function is executed immediately.

All guietta magic properties already use this decorator, so all GUI
updates are automatically executed in the main GUI thread.

	
guietta.undo_context_manager(get_func)

	Modify the decorated function so that it returns a context manager that,
when exiting, restores the previous widget state (saved
calling get_func):

def get_label()
 return gui.label

@undo_context_manager(get_label):
def set_label(value):
 gui.label = value

then later in the program:

with set_label(value):
 ...

upon exiting the with block, the label text will revert to its
previous value.

How Guietta works

For the constructor aruguments:

	
	argument checks (layer_check())

	
	Check that all elements are iterables, raise ValueError if not.

	Take the longest

	Expand single-elements ones to the longest using ___

	Check that all rows have the same length, raise ValueError if not.

	
	Compact syntax is expanded (convert_compacts())

	
	‘xxx’ is converted to L(‘xxx’)

	‘__xxx__’ is converted to QLineEdit(‘xxx’)

	[‘xxx’, ‘yyy’] is converted to B(‘xxx’, ‘yyy’), with ‘yyy’ optional.
Lists with 0 or >2 elements raise ValueError

	2-tuples are recursed into in order to expand
the first element if needed

	Labels and buttons are created (create_deferred())

	
	Labels

	
	L(‘xxx’) becomes (QLabel(‘xxx’), ‘xxx’)

	L(‘xxx.png’) becomes (QLabel(QPixmap(‘xxx.png’)), ‘xxx’)

	
	Buttons

	
	B(‘xxx’) becomes (QPushButton(‘xxx’), ‘xxx’)

	B(‘xxx.png’, ‘yyy’ becomes (QPushButton(QIcon(‘xxx.png’)), ‘yyy’)

	Automatic buttons (Quit, Yes, No.. etc) are created and connected

	Separators are created

	2-tuples are rercursed into in order to expand
the first element if needed.

	
	Multiple names are collapsed (collapse_names())

	
	Things like (((widget, ‘name1’), ‘name2’), ‘name3’)
become (widget, ‘name3’). Nesting is flattened for an arbitrary depth.

	
	Type check (check_widget()). All resulting widgets must be one of two types:

	
	A QWidget instance, or

	a 2-tuple (QWidget, ‘name’)

Instance properties

Widgets values can be get/set like a property:

gui.label = 'text'
value = gui.slider

These property-like attributes are created on the fly when the GUI is
built. We cannot use real properties, because these are class attributes
and they would be shared between instances. Instead, there is a
dictionary self._guietta_properties which contains a mapping from property
name to a pair of get/set functions (a namedtuple is used for the pair
in order to have nice methods names). These methods are set to the ones
appropriate for the widget type at construction time.

The _guietta_properties dict is used by __getattr__ and __setattr__ to
emulate the property behaviour. Since these methods would be used
to lookup _guietta_properties itself, this mapping must be created in the
__init__ method as its first instruction, and using self.__dict__ instead
of direct attribute access.

Changelog

[0.5.0] - 2020-10-04

Added

	iterator protocol to loop through GUI events

	thread management options

[0.4.0] - 2020-10-03

Changed

	Refactored matlotlib and pyqtgraph code into separate files

Added

	PGI() widget for pyqtgraph images.

	pyqtgraph widgets: added magic properties for plots and images.

	property proxies with the proxy() method

	“undo” context manager for properties

	connect() now has a default signal name

[0.3.8] - 2020-07-20

Changed

	Workaround for bugs in some version of the “inspect” module.

[0.3.7] - 2020-07-20

Changed

	Compatibility with old Matplotlib versions (<2.1)

[0.3.6] - 2020-07-20

Added

	support for group boxes

	hierarchical layouts (“child” Gui instances) using property assignments

	font() method and construction keyword argument

	matplotlib widgets: added magic properties, subplots, arbitrary
calls upon redrawing.

Changed

	callback in background processing is now optional

	documentation on readthedocs is finally properly versioned

[0.3.5] - 2020-07-10

Added

	title() method and construction keyword argument

	pyqtgraph integration

Changed

	QComboBox default signal is now ‘currentTextChanged’ for better
backward compatibility with older QT versions.

	Fallback to import from PyQt5 instead of PySide2 if the latter fails.

[0.3.4] - 2020-07-06

Added

	Pre-defined radio button groups

	Progress bar widget

	Added default signal ‘valueChanged’ for QDial and QScrollBar

Changed

	Fixed bug for images when using the full file path

	Fixed small bugs in the examples

	“with” context manager now can reference imports and functions
defined outside it.

[0.3.3] - 2020-06-18

Changed

	Support for older PySide versions (v5.9+)

	Fixed bug in ValueSlider layout

	Internal refactor adding the new Rows class.

Added

	‘clicked’ signal for Matplotlib widgets

[0.3.2] - 2020-05-26

Changed

	Fixing incompatibilites between GitHub’s and PyPI’s README format.

[0.3.1] - 2020-05-26

Added

	Support for ComboBoxes (using QComboBox)

	Splash Screen (using QSplashScreen)

	@auto decorator syntax

	“with” context manager syntax

	removed all widget-generating functions, all widgets are now classes

	widgets can be specified with just the class, a widget with a default name
will be allocated.

Changed

	“dropped” signal for list boxes (QListBox) renamed to “drop”

[0.3.0] - 2020-05-18

Changed

	Using PySide2 bindings instead of PyQt5

Index

 A
 | C
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	auto() (guietta.Gui method)

 	
 	Ax() (in module guietta)

C

 	
 	close() (guietta.Gui method)

 	
 	column_stretch() (guietta.Gui method)

E

 	
 	enable_drag_and_drop() (guietta.Gui method)

 	events() (guietta.Gui method)

 	execute_in_background() (guietta.Gui method)

 	(in module guietta.Gui)

 	
 	execute_in_main_thread() (guietta.Gui method)

 	(in module guietta)

F

 	
 	fonts() (guietta.Gui method)

G

 	
 	get() (guietta.Gui method)

 	get_selections() (guietta.Gui method)

 	
 	Gui (class in guietta)

 	GuiettaProperty (class in guietta)

I

 	
 	import_into() (guietta.Gui method)

 	
 	iter() (guietta.Gui method)

L

 	
 	layout() (guietta.Gui method)

M

 	
 	M() (in module guietta)

N

 	
 	names (guietta.Gui attribute)

 	
 	normalized() (in module guietta)

P

 	
 	PG() (in module guietta)

 	
 	PGI() (in module guietta)

 	proxy() (guietta.Gui method)

R

 	
 	rename() (guietta.Gui method)

 	
 	row_stretch() (guietta.Gui method)

 	run() (guietta.Gui method)

S

 	
 	show() (guietta.Gui method)

 	
 	splash() (in module guietta), [1]

T

 	
 	title() (guietta.Gui method)

U

 	
 	undo_context_manager() (in module guietta)

W

 	
 	widgets (guietta.Gui attribute)

 	
 	window() (guietta.Gui method)

QT incompatibilities with conda

Short version: before or after installing guietta, also install PySide2
using conda:

conda install -c conda-forge pyside2

This command sometimes takes a lot of time to complete. Give it time.

Long version:

pip and conda do not work well together. In particular, Conda ships
with a default QT library, which is not detected by pip. When guietta
is installed, pip will automatically install its version of PySide2
as a dependency. Unfortunately the two libraries are not binary compatible,
and this will lead to a crash when PySide2 is imported.

This is fixed by installing PySide2 with conda, before or after guietta
is installed, using this command:

conda install -c conda-forge pyside2

A new conda-compatible copy of PySide2 will be installed, that
should work without problems.

Some bug reports about the problems of Conda with Qt5:

	https://github.com/ContinuumIO/anaconda-issues/issues/1970

	https://github.com/ContinuumIO/anaconda-issues/issues/1554

It appears that the root cause is conda’s renaming of “PyQt5” to “pyqt”.
This leads pip to believe that PyQt5 is not installed, so it installs it,
resulting in two incompatible libraries and a crash at the first
“import PyQt5”.

Guietta uses the PySide2 Qt binding [https://pypi.org/project/PySide2/],
but it seems to suffer from the same problem.

Troubleshooting

First stop: if you use conda, please read our page on
QT incompatibilities with conda.

If you don’t use conda, but you see error messages similar to these
every time you import the guietta module:

qt.qpa.plugin: Could not load the Qt platform plugin "xcb" in "" even though it was found.
This application failed to start because no Qt platform plugin could be initialized. Reinstalling the application may fix this problem.

Available platform plugins are: eglfs, linuxfb, minimal, minimalegl, offscreen, vnc, wayland-egl, wayland, wayland-xcomposite-egl, wayland-xcomposite-glx, webgl, xcb.

Aborted (core dumped)

This means that some QT plugins are missing, and/or not installed correctly.
Ubuntu 16.04 for example is missing the libxcb-xinerama0 in its default
installation.

Turn on the plugin debug like this:

export QT_DEBUG_PLUGINS=1

Run again the Guietta program, and you will get a lot more output with
hopefully an error message, which in my case was:

Cannot load library /usr/local/lib/python3.5/dist-packages/PySide2/Qt/plugins/platforms/libqxcb.so: (libxcb-xinerama.so.0: cannot open shared object file: No such file or directory)

Therefore I installed libxcb-xinerama0:

sudo apt install libxcb-xinerama0

This problem and successful resolution was also reported for Ubuntu 20.04

 _static/comment-bright.png

_images/guietta_screenshot_psd.png
PSD

10-16

1017

10-18

PSD [(a.u.)~2]/Hz

10-19

10-20

10! 102

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/example.png
Enter numbers: 2 + 3 Calculate

Result: 5.0

Quit

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Guietta!

 		
 Introduction

 		
 The problem with GUIs

 		
 What Guietta is

 		
 What Guietta is not

 		
 Aren’t you just copying from PySimpleGUI?

 		
 The layout doesn’t respect PEP8!

 		
 Tutorial

 		
 What you need

 		
 Install Guietta

 		
 Should I learn QT before starting?

 		
 Quickstart

 		
 Guietta’s magic properties

 		
 Working with normalized names

 		
 GUI actions

 		
 The events layer

 		
 Assign a callable

 		
 Automatic events

 		
 The with statement

 		
 Explicit connect

 		
 Exception handling

 		
 GUI queues

 		
 Using images

 		
 Radio buttons

 		
 Special layouts

 		
 Matplotlib

 		
 Multiple plots

 		
 Pyqtgraph

 		
 Images

 		
 Splash screens

 		
 Advanced topics

 		
 Background processing

 		
 Working with threads

 		
 Define magic properties for custom widgets

 		
 Property proxies

 		
 Property contexts

 		
 Using other QT classes

 		
 Hierarchical GUIs

 		
 Groupboxes

 		
 Packaging your application

 		
 Reference

 		
 Layout

 		
 Syntax

 		
 Widgets

 		
 Continuations

 		
 Signals

 		
 Properties

 		
 Exception catching in slots

 		
 QT symbols in Guietta

 		
 Gui class reference

 		
 Module-level functions reference

 		
 How Guietta works

 		
 Instance properties

 		
 Changelog

 		
 [0.5.0] - 2020-10-04

 		
 Added

 		
 [0.4.0] - 2020-10-03

 		
 Changed

 		
 Added

 		
 [0.3.8] - 2020-07-20

 		
 Changed

 		
 [0.3.7] - 2020-07-20

 		
 Changed

 		
 [0.3.6] - 2020-07-20

 		
 Added

 		
 Changed

 		
 [0.3.5] - 2020-07-10

 		
 Added

 		
 Changed

 		
 [0.3.4] - 2020-07-06

 		
 Added

 		
 Changed

 		
 [0.3.3] - 2020-06-18

 		
 Changed

 		
 Added

 		
 [0.3.2] - 2020-05-26

 		
 Changed

 		
 [0.3.1] - 2020-05-26

 		
 Added

 		
 Changed

 		
 [0.3.0] - 2020-05-18

 		
 Changed

_static/up-pressed.png

_static/up.png

_static/plus.png

